Formulas for gears calculation - internal gears

Contens

Internal spur gears with normal profile

> Internal spur gears with corrected profile

• Without center distance variation

• With center distance variation

Internal helical gears with normal profile

Internal helical gears with corrected profile

• Without center distance variation

• With center distance variation

Length of contact and contact radius R_a

> Interference

> Dimension over pins and balls

Meaning of symbols			
а	Center distance	m	Module
α	Pressure angle	Q	Dimension over pins or balls
β	Helix angle	r	Radius
d	Diameter	Ra	Radius to start of active profile
g	Length of contact	S	Tooth thickness on diameter d
g 1	Legth of recession	\bar{S}_{os}	Chordal thickness
g ₂	Length of approach	t	Pitch
h _f	Dedendum	W	Chordal thickness over z' teeth (spur gears)
h _k	Addendum	W	Chordal thickness over z' teeth (helical gears)
h ₀	Corrected addendum	Z	Number of teeth
h _r	Whole depth	Х	Profile correction factor
I	Tooth space		
Meaning of indices			
b	Reffered to rolling diameter	n	Reffered to normal section
С	Referred to roll diameter of basic rack	0	Reffered to pitch diameter
f	Reffered to root diameter	q	Reffered to the diameter throug balls center
g	Reffered to base diameter	r	Reffered to balls
k	Refferred to outside diameter	S	Reffered to transverse section
i	Refferred to equivalent	W	Reffered to tool

Internal spur gears with normal profile

$$\begin{array}{ll} d_o = m \cdot z & h_r = h_k + h_f \\ t_o = m \cdot \pi & d_k = d_o - 2h_k \\ d_g = d_o \cdot \cos \alpha_o & d_f = d_o + 2h_f \\ t_g = t_o \cdot \cos \alpha_o & s_o = \frac{m \cdot \pi}{2} \\ h_k = m & h_f = \frac{7}{6} \cdot m \quad \text{or} \quad h_f = \frac{5}{4} \cdot m \end{array}$$

Fig.N°1

Internal spur gears with corrected profile

a)- Without center distance variation

$$h_k = m - x \cdot m$$

$$h_f = \frac{7}{6} \cdot m + x \cdot m \quad \text{or} \quad h_f = \frac{5}{4} \cdot m + x \cdot m$$

$$s_{oc} = \frac{m \cdot \pi}{2} - 2 \cdot x \cdot m \cdot \tan \alpha_o$$

b)- with center distance variation

$$inv \ \alpha_b = inv \ \alpha_o + 2 \tan \alpha_o \frac{x_1 - x_2}{z_1 - z_2}$$

$$a_b = a \frac{\cos \alpha_o}{\cos \alpha_b} \qquad \qquad d_b = \frac{d_g}{\cos \alpha_b}$$

$$s_b = r_b \left[\frac{s_{oc}}{r_o} - 2(inv \,\alpha_o - inv \,\alpha_b) \right]$$
$$d_k = m(z - 2 + 2x)$$

Internal helical gears with normal profile

$$\begin{array}{lll} d_o = m_s \cdot z & t_{os} = m_s \cdot \pi \\ d_g = d_o \cdot \cos \alpha_{os} & t_{gs} = t_{os} \cdot \cos \alpha_{os} \\ m_n = m_s \cdot \cos \beta_o & \tan \alpha_{on} = \tan \alpha_{os} \cdot \cos \beta_o \\ t_{on} = m_n \cdot \pi & t_{gn} = t_{on} \cdot \cos \alpha_{on} \\ h_k = m_n & h_f = \frac{7}{6} \cdot m_n & \text{or} & h_f = \frac{5}{4} \cdot m_n \\ h_r = h_k + h_f & d_k = d_o - 2h_k \\ d_f = d_o + 2 \cdot h_f & s_{on} = \frac{\pi \cdot m_n}{2} & s_{os} = \frac{\pi \cdot m_s}{2} \end{array}$$

Internal helical gears with corrected profile

a)- Without center distance variation

$$h_k = m_n - x \cdot m_n$$

$$h_f = \frac{7}{6} \cdot m_n + x \cdot m_n \quad \text{or} \quad h_f = \frac{5}{4} \cdot m_n + x \cdot m_n$$

$$s_{onc} = \frac{m_n \cdot \pi}{2} - 2 \cdot x \cdot m_n \cdot \tan \alpha_{on}$$

$$s_{osc} = \frac{m_s \cdot \pi}{2} - 2 \cdot x \cdot m_n \cdot \tan \alpha_{os}$$

b)- With center distance variation

$$inv \ \alpha_{bs} = inv \ \alpha_{os} + 2 \tan \alpha_{on} \frac{x_1 - x_2}{z_1 - z_2}$$

$$a_b = a \frac{\cos \alpha_{os}}{\cos \alpha_{bs}} \qquad d_b = \frac{d_g}{\cos \alpha_{bs}}$$

$$s_{bs} = r_b \left[\frac{s_{osc}}{r_o} - 2(inv \ \alpha_{os} - inv \ \alpha_{bs}) \right]$$

$$d_k = m_n \left(\frac{z}{\cos \beta_o} - 2 + 2x \right)$$

Contact length calculation

$$\begin{split} \rho_{k1} &= \sqrt{r_{k1}^2 - r_{g1}^2} & \rho_{k2} &= \sqrt{r_{k2}^2 - r_{g2}^2} \\ g &= \rho_{k1} - \rho_{k1} + a_b \cdot \sin \alpha_b \\ g_1 &= \rho_{k1} - r_{b1} \cdot \sin \alpha_b & g_2 &= -\rho_{k2} + r_{b2} \cdot \sin \alpha_b \end{split}$$

Contact radius Ra calculation

$$R_{a2} = \sqrt{(\rho_{k2} + g)^2 + r_{g2}^2}$$

In the case of helical gears use transverse section values $\, lpha_{bs} \,$ instead of $\, lpha_b \,$.

Fig. N°3

Interference

Primary interference

Minimum internal diameter without interference

$$d_{k2min} = \sqrt{d_g^2 + (2a_b \cdot \sin \alpha_b)^2}$$

Secondary interference (figure N 4)

$$\cos \delta = \frac{r_{g_1}}{r_{k_1}} \qquad v = inv \, \delta - inv \, \alpha_b$$

$$\cos \partial = \frac{r_{k2}^2 + a_b^2 - r_{k1}^2}{2 \cdot r_{k2} \cdot a_b} \qquad \cos \varphi = \frac{r_{k2}^2 - a_b^2 - r_{k1}^2}{2 \cdot r_{k1} \cdot a_b}$$

When the points K_1 and K_2 on the pinion and gear move to $\ K'_1$ and $\ K'_2$ in time $\ t_1$ and $\ t_2$, the respective angles are:

for the gear:
$$\partial - \varepsilon$$
 ; $t_2 = \frac{\partial - \varepsilon}{\omega_2}$

for the pinion:
$$\phi + \nu$$
 ; $t_1 = \frac{\phi + \nu}{\omega_1}$

To avoid interference, the points K_1 and K_2 should not coincide at K_1 and K_2 and should satisfy the condition:

$$t_1 > t_2$$
 or $\frac{\varphi + \nu}{\omega_1} > \frac{\partial - \varepsilon}{\omega_2}$

The diagram of figure N°5 is used to determine the largest difference z_2-z_1 , which is a function of the pressure angle α_o and the ratio $\frac{h_k}{m}$, where not interference exist. When the gears are corrected h_k becomes:

$$h_k = \frac{h_{kb2} + h_{kb1}}{2}$$

Fig. N°5

Dimension over pins and balls (figure N %)

Spur gear with even number of teeth $inv \; \alpha_q = inv \; \alpha_o - \frac{d_r}{2r_o \cdot \cos \alpha_o} + \frac{l_o}{2r_o} \quad \text{from which we have } \alpha_q$

$$r_q = r_o \frac{\cos \alpha_o}{\cos \alpha_q}$$
 $Q = \mathbf{2} \cdot \mathbf{r_q} - \mathbf{d_r}$

Spur gear with odd number of teeth

 $lpha_q$ and r_q are the same as for even teeth, but $Q = 2 \cdot r_q \cdot \cos rac{\pi}{2z} - d_r$

Helical gear with even number of teeth

$$inv \ \alpha_{qs} = inv \ \alpha_{os} - \frac{d_r}{2r_{os} \cdot \cos \beta_o \cos \alpha_{on}} + \frac{l_{os}}{2r_{os}}$$

$$r_{qs} = r_{os} \frac{\cos \alpha_{os}}{\cos \alpha_{qs}}$$

$$Q = \mathbf{2} \cdot \mathbf{r}_{qs} - \mathbf{d}_{r}$$

Helical gear with odd number of teeth

 α_{qs} and r_{qs} are the same as for even teeth, but $Q = 2 \cdot r_{qs} \cdot \cos \frac{\pi}{2z} - d_r$

Fig.N[∞]6